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EFFECTS OF ENERGY DISSIPATION AND MELTING ON SHOCK COMPRESSION 

OF POROUS BODIES 

S. Z. Dunin and V. V. Surkov UDC 534.222.2 

Shock waves are a phenomenon not only associated with the possibility of destructive 
action but utilizable in a purely constructive manner: for molding of materials, welding, 
restoration of the thermodynamic parameters of condensed materials [i], construction of 
materials with a given degree of porosity, and the use of porous materials as a shock-wave 
damper [2]. 

The questions associated with the propagation of strong shock waves (pressures greater 
than 50 GPa) in porous bodies have been worked out in great detail [i]. The phenomenon in 
shock waves of strength from 0.i GPa to tens of gigapascals has not yet been investigated in ~ 
such great detail. In particular, the questions of the energy dissipation mechanism upon 
shock compression of porous bodies have not been investigated in this range of pressures. 

Experiments with porous samples [3, 4] show that viscoplastic flow of material in the 
shock wave occurs most strongly in the vicinity of strong inhomogeneities. The local tem- 
peratures in these regions noticeably exceed the average temperature in the shock wave. 
Analogous effects are observed in connection with the explosive squeezing of cylindrical 
shells, where melting and evaporation of the inner surfaces of the shells occurred [5]. 

The distribution of the internal energy in the vicinity of an inhomogeneity is derived 
in this paper, and the nature of the energy accumulation and the effects of melting accom- 
panying shock compression of porous bodies are analyzed on the basis of this distribution. 
The effect of thermal expansion of the material is investigated, and the behavior of the 
anomalous adiabats of porous media is studied in the pressure range comparable with the 
strength of the material. The problems of the structure of the shock front are considered, 
and the dependence of the melt volume on the wave amplitude is analyzed. 

We will consider shock waves whose amplitude is small in comparison with the com- 
pressibility of a rigid body K (K ~ 50 GPa) but sufficiently large that a viscoplastic flow 
occurs in the vicinities of the pores. In this pressure range the width of the shock front 
is much larger than the sizes of the inhomogeneities [6]; one can assume the rigid body to 
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be incompressible, since the density of the medium varies mainly due t o  plastic inflow of 
the pores. We will investigate the behavior of material with pores on the basis of the 
spherlcal-cell model [6]. The volume deformations of the cells is characterized by the 
variation of the macroscopic porosity parameter ~, which is equal to the ratio of the total 
volume of the medium to the volume of the rigid body. In this model u = b3/(b 3 --a3), where 
b and a the the instantaneous radii of the cell and the pore. Spherical symmetrical com- 
pression of~ the cell is described by the pressure equation and the conditions of visco- 
plastic flow 

dv OOr o0. 
Ps ?-7 = -g'r + 2 ~  r ' (1 )  

~r - -  ~o = Y + 2~1 (OvlOr - -  v / r )  (2)  

with the boundary conditions or(a) = 0 (we will assume that the amount of gas in the pores 
is insignificant). Here o r and g0 =% are components of the loca~ stress tensor, v is the 
velocity of radial motion, and Os = const, Y, and n are the density, yield point, and vis- 
cosity of the rigid body. The mass conservation condition of material with Ps = const is 
of the form r 3 -- r~ = a 3 --a~ (the subscript "0" refers to the initial values of the quan- 
tities), from which an expression is obtained for the velocity 

v = a ~ & / t 3  ( %  - 'l) r ' l .  (3 )  

The system of mechanical equations (1)-(3) has been solved [6], thus permitting de- 
termination of the nature of the motion of the medium in the vicinities of pores and finding 
a relation between the average values of the pressure and density of the medium. 

Let us investigate the effects of local heating of the material which viscoplastic 
inflow of the pores will produce. The equation for the energy dissipated per unit volume 
gd is written in the Lagrangian variables ro and t as 

2 - o0 )  (4) 
Ot "2, \Or r 1" 

Substituting the relationships (2 )  and (3) expressed in terms of the variables ro and t 
into Eq. (4) and integrating (4) over the time, we obtain 

t 

(5) ca(%,  t) = --~In I 4- 
, .~(=o_~) j --5- , [ ~ ( % _ ~ ) _ 4 ( = o - ~ < ) ]  ~-" 

Here the first term determines the contribution to energy dissipation by plastic friction, 
and the second term determines that due to viscosity. The total increment to the internal 
energy e of the element of the medium having the coordinate ro (processes are considered 
whose durations t d << t T and t T are the characteristic times of the thermal conductivity) 
also includes the kinetic energy of motion of the material towards the centers of the 

cavities 

Ps %cO 
e k (ro, t) =: tS (a o --  t )  :/3 [rg (a o --  1) --  <,o ~ (a o - -  a ) ]g~ '  e = ed 4- ~ ,  (6 )  

which also changes into heat eventually. 

Averaging of the quantity E over the volume of the solid material of a cell gives the 
variation of the average value of the internal energy ~ per unit volume of the rigid body. 
The increment of energy of a unit mass of the solid component ~/Ps is equal to the corre- 
sponding value for a porous medium, since one can neglect the surface energy of the pores 
[2]. Averaging the relationships (5) and (6), we arrive at an expression for ~ namely, 

(7) 

2Y ~o -- I c~ 
~ 1  = "-$-[CZo In % ' -  ( ~ Z o ~ "  -- l) In ~--~f't -}- (~Zo - -  ~z) ]n ~--~-{_ 1}, 

�9 2"2 
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where 11 and 12 are the average values of the dissipated energy due to plastic and vis- 
cous friction and ~a is the average kinetic energy of motion which arises upon collapse 
of the cavities. 

The expression for the internal energy can also be represented in the form of the work 
expended in closing the pores. The distribution of microstresses in the vicinity of a pore 
can be found by substituting (2) and (3) into (I) and integrating Eq. (i) over the radius 
with the boundary condition taken into account. As a result we obtain 

ci, = 2Y ln ~ + :3-~o --]) (a-a -- r-a ) :~- a ( % -  r) ~ ( ~ = 1 ) , '  �9 (8)  

We find the stress on the cell surface, which plays the role of an external force, by sub- 
stituting r = b into (8) and transforming the result to the form 

Psa; ~ ~ - ~  (~__1)-'5 _}__ff (~__t)- -5_r  4n~ , 2Y, a 
- c , r  lr=~ = 3 (~--" ])'-'?~ - a ~ N -  t) - ~- .-f. 1 .  ~.-:-i_ 1. ( 9 )  

t ; t  

Calculating the work of these forces, we obtain the following relationship: ~ = .I' or (b) d~, 
U 0 

where ~ is defined by expression (7). In particular, it follows from this that the average 
value of the internal energy of a porous medium is not equal to the integral of the average 
pressure P over the volume. This result follows from the fact that the quantities P and 
-or(b) differ for a porous body in the dynamical case, as has been noted in [6]. 

The rate of deformation of the material a is determined by the conservation laws on the 
shock front, which result in the dependence 

P -- Po = 9s D" (ao --  =)/a~ (10) 

(D is the velocity of the shock wave, and Po is the amplltude of the elastic precursor), and 
by the equation of state, which determines the relationship between P, u, and the derivatives 
of u. Thus the investigation of a plane steady front with the dynamics of viscoplastic in- 
flow of the pores taken into account [6] has permitted determining an explicit form of the 
dependence & (a) for the case 1 << ~/(ao P~-~sY = R: 

t~ (05) = 3tz((z-- t )4 '1  ' Ps /)2 [ ~ - - % ' 7  "q- 2Y In a(%--~]. (11) 
Switching in expression (7) from the variable t to the variable u (in view of the fact that 
a(t) is a monotonic function in the loading wave) and performing the integration with Eq. 
(ii) taken into account, we obtain the quantity ~,. in the form 

PsD'~ {tzln c t ( % -  l) In ~ 1 1  }. (12) + + 

One can neglect the kinetic energy in this approximation, since ~a "~ R-2<< I. Thus the 
energy dissipated in the shock wave front is represented in the form of two terms which de- 
pend upon the porosity, We will analyze the relationship of these quantities as a function 
of the shock wave amplitude. At low pressures in the wave when the final value of the 
porosity is close to the initial value no, the expressions for ~ and ~ can be repre- 
sented in the form 

~ := P0 (% - -  =), ~ = Ps ( o ~  - -  D~) (% - -  u )2 / (2=~) ,  ( 1 3 )  

where  Po = ( 2 Y / 3 ) l n [ q o / ( u o  --  1] and Do = (2Y~o/[3Ps(ao - 1 ) ] } x / a  i s  t he  minimum v e l o c i t y  o f  
shock waves in a porous medium [6]. It follows from (13) that I~ >> ~.. 

One can simplify the relationships for ~ and ~ for a strong shock wave by taking 
account of the fact that the final porosity is close to unity. Bearing in mind that when 
R >> 1 the pressure and porosity behind the wave front are related as follows 

�9 2 r  r ( 1 4 )  P = P~ (~) "3- In = _ t '  
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when & = 0, and eliminating the quantity D from (12) with the help of (i0), we write the 
expression for ~i and 6% in the form 

~ = (2YI3)[ao In ao --(ao --1) In (a,, --t)l, ~2 ~ (P  -- Po) (~o --1)/2 --(2V/3) In a,. 

Thus in the range of pressures P >>Y, in which the pores are practically completely 
chosen, the quantity ~2>>~,, i.e., energy dissipation occurs mainly by virtue of viscous 
friction. This result also follows from the fact that in the P-~ diagram the term I~ is 
determined by the area bounded by the Rayleigh line and the static curve Pc(a). 

Adding the expressions for ~j (7) and ~2 (12) and representing the quantity D in 
terms of the shock wave amplitude, we have the relationship 

= ~ ,  + ~2 = (~0 - ~)(P + Po)/2, (15) 

which is valid at all points of a steady wavefront. Thus in the final state behind the 
shock wave front Eq. (15) coincides with the Hugoniot adiabat of the medium described in the 
usual form ~/Ps= ( V - - ~ ) ( P + P o ) / 2 ,  where P and V are the final values of the pressure and 
specific volume. 

When inertial effects are taken into account, the relationship (15) is not satisfied, 
generally speaking, since part of the energy of the wave changes into kinetic energy of vi- 
brational motions of the medium around the cavities, which was not taken into account here. 
In this case a deviation of the dynamic compression curve from the static curve Pe(~) 
occurs, which is related to the influence of inertia effects [6]. 

It is evident from an analysis of the expression (5) for the dissipated energy that the 
highest temperatures occur near the surface pores. 

Substituting re = ao into (5) and switching to the variable u, we obtain 
% 

2Y ~t,--I , 4qD~ d,x dez" tD fZ'd (ao, ~) =--ln"6-CT_t ~ - ~ o  j c-7~T(~')(~,_l).. ~=-:--. (16) 3 ao 

in a solid body the asymptotic dependence d~/dT Upon collapse of the cavities 
(a -- 1)*/6 is satisfied [6]. From this we find that as a § i the term associated with plas- 
ticity has a logarithmic singularity, and the viscous term in (16) tends to ~ as (a -- 1)-5/6 . 
The energy accumulation associated with plasticity can be eliminated if one takes account 
of the fact that at the melting temperatures the material in the vicinity of a pore changes 
into the liquid state with Y = 0. 

In the case of a large initial porosity the heating of the material in a shock wave is 
so intense that the effects of thermal expansion of the material become important. Thus 
for ao ~ 2 and pressures in the wave higher than several gigapascals the density of the 
material behind the shock front decreases due to thermal effects [i, 7]. One should in- 
vestigate the behavior of a porous medium in this pressure range with the compressibility 
of the material taken into account. To do this we will make use of the Mie-Gruneisen equa- 
tion of state of a solid body in the form 

E = E c + vr (Q  - -  Qc)/F,  (17) 

where E and Ec are the total and cold energies of unit mass of solid material, Q and V s are 
the pressure and specific volume of the solid material, and F is the Gruneisen coefficient, 
which one can assume to be constant for pressures Q << K. Taking account of the fact that 
the variations of the volume and the cold component of the pressure Qc in this range of 
pressures are connected by a linearly elastic relationship [i], we have 

Qc - Q c ( V s o )  = K ( ~ •  - -  ~ ) / ~ s o ,  ( 1 8 )  

Ec --Ec(Vso) = K ( ~ o  - -  ~)~/(2Vs,  o). 

Here the energy of unit mass of porous material is equal to the energy of continuous ma- 
terial if one neglects the surface energy of the pores. We write the shock adiabat of the 
medium in the usual form 

E --Eo = (P +Po)(Vo -- V)/2, (19) 

which is obtained from (15) for the case R >> 1 on the basis of an analysis of dissipative 
processes in the shock wave. Adding the relationship (14), which gives a dependence between 
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the pressure and the porosity behind the shock front, to Eqs. (17)-(19), and taking the 
relations Q = Pa and V = Vsu into account, we obtain a system of equations which determines 
the shock adiabat of a porous material. The final state of the medium behind the shock front 
is expressed by the values E, P, V, a, Q, and V s . Thus, solving the equations for P and 
V: = V/Vo, we obtain the shock adiabat of a porous material in the form 

a)h ~ I/'h~-po h + t  (t--h) } t + ( i - - h )  P+Po h 
V~--~ + l,, K a ~-'K Qco +% -aoK Qc. K = 0 ,  (20) 

where ~ = a(P) is determined by expression (14). The parameter h = i + 2/r and Qco can be 
found from the condition Qco = Poao - EsoF/Vso, in which ETo = ETo(To, Vso) is the value of 
the thermal energy of the material at the initial temperature To and volume Vso. 

One should choose the solution with the plus sign in front of the quadratic root from 
the two solutions of the quadratic equation in V~ (20), since it passes through the initial 
point V~ = I and P = Po. At low pressures, when one can neglect the terms P/K and Po/K, 
Eq. (20) changes to the form Vx = a/~o (or V -- Vso~), which does not depend on h, K, and 
Qco. It follows from this that a change in the volume is related only to a decrease in the 
pore volume and one can neglect the heated material. 

In the other limiting case as ~ + i Eq. (20) is solved for P and takes the form 

P = [K [V , (h+  i ) - -  ~aalz-- ay'] + (I - -h ) (V~- -ao ' )Qc.+Po(h- -VOl {hVx- - l } - ' .  (21) 

This expression is in agreement with the results of [1], in which the shock adiabat of 
a porous material is obtained with neglect of the strength of the medium Y. Since it fol- 
lows from analysis of (21) for V ~ Vso (V~ ~ ~) that for ao > h the volume increases and 
for ~o < h it decreases, then the shock adiabats P(V) for ~o > h have a turning point V 
Vso , which separates the section of the curve in which the volume increases when the shock 
wave amplitude increases. Calculations of the shock adiabats of porous copper according to 
Eqs. (14) and (20) are presented in Fig. 1 which are compared with experimental results [7]. 
The following values of the parameters were used: K = 1.2"10 ~ GPa, Vso = I.i'i0 -~ ma/kg, 
Y = 0.23 GPa, E = 7.7'104 J/kg, F = 1.9 [i, 8], and ~o = 1.91 and 2.98 (curves I and 2); 
i' and 2' are experimental curves for the very same values of uo. The deviation of the 
calculated curves from the experimental ones in the region P ~ Y may be related to deforma- 
tional strengthening of the material, which was not taken into account. 

The regions of applicability of formulas (20) and (21) are limited to pressures of 
several tens of gigapascals, since for larger pressures the nonlinear nature of the de- 
pendence Qc(Vs) is important. If one replaces the approximate relationships (18) with more 
general ones, then Eq. (21) (for the case ~ + i) changes into the equation derived in [i]. 

Let us consider shock waves whose intensity is sufficient that molten zones are formed 
near the pores (the conditions for the occurence of these regions will be derived below). 
We will write the equations for the shear stresses in the solid and liquid phases in the 
vicinity of a pore in the form 

Gr - -  Go = Y + 2,1 (Or~Or - -  v/r),  r ,  < r <~ b, ( 2 2 )  

o r  - -  Go = 2tt  (Or~Or - -  v l r ) ,  a <~ r < r , ,  

where n and ~ are the viscosity coefficients of the solid body and the melt and r, = r,(t) 
is the radius of the molten zone, for whose determination it is necessary to know the tem- 
perature distribution near the pores. The normal components of the local stress tensor 

Gr(a) ---= 0, Gt(r .+)  = Gt(r,--) (23) 

are continuous on the pore surfaces and the interphase boundaries. One can integrate the 
equation of spherically symmetric motion of material towards the center of a pore under 
conditions (22) and (23) if one assumes that the solid body is incompressible (an expression 
for the radial velocity (3) is known in this case). By determining the stress distribution 
near a pore and averaging it over the cell volume, we obtain the following dependence of the 
average pressure in the medium on the porosity and the radius of the molten zone [i0]: 

p =  (%_D~I: ~. --A(a)~+B(~)-~ --3=[ ~T~----[ + + In 8 + E - - I  ' (24) 
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where ~ is the relative fraction of molten material. For 6 = 0 expression (24) is similar 
to the relationship derived in [6, 9] in the absence of melting. The dynamical terms in 
the expression for P characterize the contributions due to inertia and viscosity, and the 
last term determines the equilibrium part of the total pressure. 

Solving the system of equations (i0) and (24), we obtain a second-order differential 
equation in the function e(~), where ~ = (x -- Dt)/~o, x is the coordinate in the propagation 
direction of the wavej and ao is the initial radius of the pores. For the function g(~) = 
d~/d~ this equation reduces to the first-order equation 

A ( ~ )  dg = S ( = ) - -  + ( = o - - l )  ~ u  ~ = - - 1  �9 - ' 

2k ~- =0(8 + s -- i) % -- = ~ 
F (tz) = - T -  In  = (% - - l )  ,-b s ]  ' n = '~ ' - '  

, 1 / - r  
R =n/bo  pv-  rl, t; : V 

with the boundary condition g(ao) = 0. We make use of the distribution of the energy dis- 
sipated in the vicinity of a pore (Eq. (5)) to determine the unknown function ~ = ~(u). 
The temperature on the boundary of the melt and the solid phase at r = r, is equal to the 
melting temperature T,. and the increment to the thermal energy is e, = PscV(T, -- To) + Eo. 
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where c V is the specific heat, To is the initial temperature, and eo is the latent heat of 
fusion. Equating the expression for the energy dissipated near a pore to the value of e, 
and expressing r, in terms of 6, we obtain the integral equation 

Eo=l,  (26) 
o-i~-a ~ ; , - - ,  [ o + = ' : ~ 1  ~ 

where 6' = 6(e') and Eo = 3e,/(2Y). 

Thus, in the region of phase coexistence the behavior of a porous medium upon shock 
compression is determined by a system of differential and integral equations in the func- 
tions g(s) and ~(e). The system has the solutions 6(~) ~ 0, which have physical meaning 
when ~ ~ =,. where ~, is the critical value of the porosity corresponding go the origin of 
a melting zone on the pore surface. For ~ > e, the structure of the shock wave front is 
described by Eq. (25) with ~ = 0. 

The solutions of Eqs. (25) and (26) which depend on the five dimensionless parameters 
(Eo~ R, k, 5o, and n) describe the compression phase in the region g ~0, 5 t ~ 5 ~_ so, 
where s t is the first turning point, which is subject to determination in the course of 
solving the equations. Its value lies in the interval 1 <~< 5 t ~ be, where 5 e is the 
porosity at the equilibrium position of the system (dab/d~ a = g = 0), which is specified by 
the equation 

F(~,  6(~), k, ~ o ) =  0. (27)  

Investigation of the structure of the shock wave front [6, 9] shows that in the ease 
R >> 1 one can neglect the inertia terms in the expression for the pressure. At the same 
time Eq. (25) simplifies, which permits finding the function g in the form 

g = 41~1~i(t- o)( e- I)tn6~l" (28) 

Eliminating g from (26), we arrive at a nonlinear integral equation for the function d(~). 

The critical value of the porosity 5, at which melting starts in the wave is found by 
substituting 6 = d' = 0 and Eq. (28) into Eq. (26). Carrying out the integration, we obtain 
the following transcendental equation for determining e,: 

3k" [ %--I ] 9__i_0 ~ (29) 
2=~ ( % ~ = ) / ( ~ x ) - ~ -  In ~ - - 1  a In % _ 1  + = l n a ~ _ a  + h * ( ~ x ) : E ~  

1n2(r - l) -- ln'-' (~ -- l) S ln~ '  
hi ((~) == 2 ~ d~z', 

- -  O~ o - -  t S o - -  (~o t ln_.ff. .CT_l + ~ 1. / ( a ) :  % - ~  

Since we are interested in the final state of the medium behind the shock front, we also 
use Eq. (27) with 6 = 0. Eliminating k from these equations, we find the implicit depen- 
dence s, = ~,(Eo, so), where s, is the point on the shock adiabat corresponding to the start 
of melting. 

Results of the numerical solution of Eqs. (27) and (29) are given in Fig. 2, where 
curves 2 and 4-7 illustrate the dependence 5,(so) for the following values of the param- 
eter Eo: 2) 2.3; 4) 3.5; 5) 6; 6) i0; and 7) 18. In the first approximation these de- 
pendences are close to the straight lines 5, -- 1 = m(5o -- I), where it is convenient to 
approximate the coefficient m by the dependence m = exp(--E~'') in the range of Eo values 
under discussion. From this we find, using (27), an approximate formula for the critical 
shock wave amplitude P, = (2Y/3)ln[e,/(u, -- !)] at which melting starts [i0]: 

3P, _In lq- (30) 2Y a o -- i " 

For small porosities this relationship reduces to the form 
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3P,/(2) ' )  = E~ "6 - -  In (a  0 - -  i ) .  

The q u a n t i t y  Eo d e p e n d s  m o s t  s i g n i f i c a n t l y  on  t h e  s t r e n g t h  p a r a m e t e r  o f  t h e  medium Y. 
F o r  e x a m p l e ,  f o r  t e m p e r e d  s t e e l  ( c  V = 0 . 1 1  c a l / g ' d e g ,  T ,  - -  To = 1510~  r = 49 c a l / g ,  Y = 
1 . 8 8  GPa) we o b t a i n  t h a t  Eo ~ 5 . 9  [ 8 ] .  One s h o u l d  a l s o  t a k e  a c c o u n t  o f  t h e  f a c t  t h a t  t h e  
e x p e r i m e n t a l  v a l u e  o f  t h e  c o e f f i c i e n t  2Y/3  i s  l a r g e r  t h a n  t h e  s t a t i c  v a l u e  a c c o r d i n g  t o  t h e  
m e a s u r e m e n t  d a t a  f o r  t h e  s h o c k  a d i a b a t s  o f  p o r o u s  m e t a l s  [ 2 ,  l l ] .  The p a r a m e t e r  Eo c a n  b e  
small at a high initial temperature To. 

The condition R > 1 is valid for the majority of metals. Thus for iron with Go = i0 -2 
cm and n = 105 P [12] we find that R ~ 42. The value of the parameter q is usually small 
(for metals n ~ 10-6-10-7), and its effect is insignificant. 

At the point a = u, the shock adiabat of a porous material in the variables P and V 
(here V = U/ps is the specific volume of the medium) experiences a discontinuity caused by 
the onset of melting. This discontinuity is not related to the change in volume associated 
with the phase transition, since one can neglect it in this case, but is caused by a de- 
crease in the shear strength of the medium upon shock compression due to the formation of 
local molten zones next to the pores [10]. 

In order to determine the shock adiabat of a medium when u < a,, it is necessary to 
know the size of the melt relative to the volume in the final state. Eliminating the param- 
eter k from (26) and (28), we find with the help of (27) an integral equation which relates 
the quantities a and 6(u) behind the shock wave front: 

~0 
E 0 ..... In 6 + % - - !  . 3 ~ ~' (='  - -  t) (~' + a '  - -  l) F (=', 6', k~ (=. 6)) 

6 + a - -  I -~ 2k ~ (a, 6) 3 1(1 - -  69 (a '  - -  l ) - k  .6 'a ' ]  [6 + ~' - -  tl  ~ d a ' ,  ( 3 1 )  

3(~-- ~) I ~(~0--'~ I-1" 

T h i s  e q u a t i o n  i s  s a t i s f i e d  i d e n t i c a l l y  a t  a = a ,  a n d  6 = 0 .  We w i l l  e x p a n d  (31 )  n e a r  ~ ,  
i n  ( a  - -  a , ) ,  a s s u m i n g  t h a t  t h e  d e r i v a t i v e  d6/da(a , )  i s  f i n i t e .  T a k i n g  a c c o u n t  o f  t h e  f a c t  
that g does not depend upon ~' in the first approximation, since an expansion in 5' under 
the integral sign gives corrections %~(a, -- a) of second-order smallness, we obtain the re- 
lationship 

8 ~ Q,(~,--~), (32) 

Ol = [tt (~,)1-1 1 [ % -  ~ ,  ~ ,  (% - l) l ( a . )  + [u~(-~,----t)  - -  In % (~. t) " ( a ~ : ~ , )  

~ / [ 2 - ~  , % - 2  % - 1  ] t) 
H (~) = - l |-a-:-v_ , ~ ~o ~ ~o ( ~ _  ~) 1 . ~ J l n  =(=~ 

% - ~ % - t ] % % % 
+ ' (% - -  t) (a - -  l) §  a o - - I  r % - - t  In % - - t  

In ~ } ] ~ ~ 3 ( % - . )  
- - 1  ~ - - i  ~ - h * ( " )  + ~ _ _  (~o - -  t) (a " l)  

The course of the shock adiabat beyond the point of discontinuity (a < a,) is described 
by the equation 3P/(2Y) = ln[a/(~ + a -- i)]. The inclination angle 7 of the tangent to the 
shock adiabat at the point a = a, is given by the expression 7 = (i -- a,Q,)/[a,(a, - i)], 
and the inclination angle of the ray joining the initial and final states (the Rayleigh 
line) is equal to ~ = (Co -- a*)-Xln{a,(Uo(U* -- I)]}. The calculations show that for values 
of u, = u*(uo, go) lying above line 3 in Fig. 2 the condition 7 < 8 is satisfied. In this 
case the medium possesses anomalous properties near the discontinuity of the shock adiabat: 
The onset of melting in such a porous material leads to the formation of a double-wave 
structure of the shock wave, and melting occurs in the second wave. Line 3 is close to a 
straight line; therefore the peculiarities of behavior of the medium are determined mainly 
by the value of go, which specifies the inclination angles of the curves u*(uo, Eo) in Fig. 
2. Thus for values Eo ~, 3.2 the medium exhibits anomalous behavior for any value of ~o. 

The rate of volume deformation g~ in the second shock wave, which we will also assume 
to be steady, is described similarly to expression (28) for g (on the assumption R >> I) 
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with replacement of so and k by ~, and k2 = (Y/ps) I/2 U -~, where U is the velocity of the 
second wave in the coordinate system (y, t) moving with the medium: 

d~ 3~F~(~)(8+ ~-- I)(~-- t) 
g~ -= ~ = 4Rk~ [(t --  6) (a --  t) + =6a]" (33)  

Here ~2 = (y -- Ut)/ao and F2(a) is determined in the same manner as is the function F(~) in 
(25), where one should make the replacements indicated above. The position of the melting 
front in this case is given by the equation 

S 0 ~ 

~+%--I 2R]g(av)dav ~ 2 R f  g= (~', 6')d=' 

in which the last term gives the increment to the internal energy due to viscous friction 
in the second wave. The quantity k,, which is expressible in terms of ~, with the help of 
(27), corresponds to the critical amplitude P,. The position of the shock adiabat after the 
discontinuity (~ < e,) is obtained from a combined consideration of Eqs. (33) and (34), 
taking account of the fact that F2(~) = 0 in the final state. The relation between the 
quantities ~ and ~ behind the wave front near the point ~ = ~, is determined as before by 
relationship (32), since the third term in (34) gives corrections of second-order smallness. 
Expanding the right-hand side of Eq. (34) near ~, and using (32), we obtain the following 
asymptotic dependence, which permits estimating the characteristic scale ~ of the second 
-shock wave : 

~ ,  -- ~ = c exp ( - - ~ / k ) ,  ~ ..... 4 ~ , n ~  
- ( 3  - (35) 

where c is a constant of integration. It follows from (35) that the minimum value of the 
wave velocity is determined by the expression U~i n ~ 2Yy~/3ps In contrast to the first 
shock wave, whose characteristic size is A = 2Rk/(ko -- k 2) [9]~ where k~ = 3(~o -- i)/2~o, 
the parameter ~ depends significantly on the quantity ~, = ~,(~o, Eo). 

Sections of the shock adiabats near the points of discontinuity are presented in Figs. 
3 and 4 for initial porosities ~ = 2 and 1.2; curve 1 depicts the shock adiabat of a porous 
material without melting taken into account, curves 2 and 5 depict the shock adiabats for 
the values Eo = 6 and 2.3, and curves 3 and 4 depict the sections of the Rayleigh lines 
which have passed through the corresponding points of discontinuity. 

The effect of thermal conductivity is exhibited in that curves 2 and 5 are more mildly 
sloping, since the return flow of heat from heated regions facilitates expansion of the 
melting zones. The decrease of the quantity Y as the temperature in the solid phase in- 
creases shows an analogous effect. 

Investigation shows (Figs. 3 and 4) that due to local melting effects total closing 
of the cavities is possible (this statement is valid when gas is completely absent from the 
pores) for comparatively small amplitudes of the shock waves (of the order of i GPa) [i0]. 
Along with the indicated mechanism, collapse of the pores at low pressures can occur due to 
inertial motion of material towards the cavity centers [6]. 

Calculations show that the coefficient ~ < 0 for points (~,. ~o) lying above line 1 in 
Fig. 2. It follows from an analysis of Eq. (33) that the final steady state in this case 
is ~ = i. Line I is close to a straight line whose slope corresponds to the value Eo 
1.3 Thus the shock adiabatsof porous materials have a horizontal section in the P-~ dia- 
gram at ~ < e, when Eo ~< 1.3. Such media are unstable with respect to shock compression 
having an amplitude larger than P,. Loss of strength due to melting results in the fact 
that for P > P, the material behaves similarly to a porous liquid: The pores collapse if 
the pressure is greater than P,. 

The distinctive features of shock compression associated with the effect of melting 
on the strength of a porous medium have not been observed experimentally. Calculations show 
that under normal conditions these effects should appear for low-melting strong materials 
(Eo is small). 

Let us analyze the variation of the volume of molten material behind the shock wave 
front as a function of its amplitude, restricting ourselves to a discussion of the case in 
which one can neglect the dependence of the deformation rate g on 6 under the integral sign 
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in (26). We will assume that the medium behind the wave front is continuous and the transi- 
tion of the material to the final state occurs continuously without formation of a double- 
wave structure. 

Performing the integration in (26) and transforming the result obtained with the help 
of (24), we obtain the expression 

3 ( P  -- P o ) / ( 2 Y )  ~ [E  o -- .,tl (8)] L - '  (6). ( 3 6 )  

g -k a o - -  1 % ~S .o l J l  o~ - t 
M ( 6 )  2 I n  ~a ~ z - ( 2 5 - - 1 ) ~  l n ~ l n % _ l _ i _ 6  i . ~ !  , 

! 

f i - - t  %-1,2 +38-2-1~z~-l)(a i % - ' ~ - 6 ( s - ~ ) 1  lnC%+ 0 L t 6 )  

For 6 ~< 1 and pressures close to P,, when incomplete closing of the pores is possible, 
we find the dependence ~(P) by making use of relationship (32): 

a= -- (ct, -- I) exp [3P/(2Y)] 
= 1 -f- (QI - -  t )  exp[3p/(2Y)]  " ( 3 7 )  

Equations (36) and (37) give the dependence of the relative fraction of melting 6 on 
the wave amplitude P over a wide range of variation of these quantities. The dependences 
6(P) calculated from (36) for porosities Uo = 2 and 1.2 are presented in Figs. 5 and 6; 
curves 1 and 2 correspond to the values Eo = 2.3 and 6. At the pressure level Pavg (lines 
i' and 2') corresponding to an increment to the average internal energy in the shock wave 
~E, (the average temperature ~T,), the relative melt volume is only 0.2-0.3 in all. This 
peculiarity is associated with the fact that most of the dissipatable energy is concentrated 
near the pores. The nonuniformity of the thermal energy distribution depends on the initial 
porosity. Thus in the limit ~o § 1 expression (36) gives P = 2Eo/(~o --i) ~ Pavg" 
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We will estimate the range of variation of the parameters in which the effect of ther- 
mal conductivity is unimportant. Taking account of the fact that most of the energy is con- 
centrated in the vicinity of a pore in a sphere of radius r ~ 4~Xt + G (t = 0 is the in- 
stant at which the shock wave arrives, and X is 
find that the characteristic time of passage of 
tT = ~{[=o/(=o -- i)] */s -- 1}2/(4• Comparing 
wave t w ~ A/D, we obtain, for example, for iron 
times are comparable when go i0 -s cm, and t T 

the thermal conductivity coefficient), we 
thermal waves between adjacent pores is 
this value with the time scale of the shock 
(• = 0.18 cm2/sec, So = 1.2-2) that these 

t w for ao ~ i0 -2 cm. The last in- 
equality is also valid for soil-type media having a low thermal conductivity. 

One can estimate the maximum temperature in the shock wave by using expression (36) 
with a variable left-hand side for 6 = 0. Thus, calculations of the temperatures upon 
shock compression of porous A1 (so = 2, P = 5 GPa) give values of the average temperature 
Tavg = 1350~ and Tmax = 1.4"10 ~ ~ which is in agreement with the experimental data [4] 
for the very same parameter values for which Tavg ~ 1500~ and the measured brightness 
temperature when the shock wave reached a surface of compressed AI powder was ~I04 ~ 

As a result of the calculations made, the distribution of the internal energy in the 
vicinity of cavities upon shock compression of porous bodies has been obtained. It has been 
shown that in the pressure range P >> Y energy dissipation occurs mainly due to viscous 
friction; in the case of low stresses in the wave (P ~ Y) plasticity makes the main con- 
tribution to energy dissipation. 

The nature of energy accumulation in the vicinity of an inhomogeneity has been 
analyzed. Energy dissipation occurs most strongly on the cavity surfaces. When the pores 
collapse, the specific dissipated energy on pore boundaries has logarithmic-type singulari- 
ties due to plasticity and power-law type (u -- 1) -5/6 due to viscous friction. 

It has been shown that a noticeable difference in behavior of the shock adiabats of 
materials of different initial porosity starts to appear at a pressure level corresponding 
to complete closing of the pores. Thus, for highly porous materials (So > 1 + 2/r) the 
shock adiabats have a turning point which separates the section of anomalous behavior of 
the material. 

The analysis performed in this paper has permitted establishing the distinctive fea- 
tures of shock compression of porous media produced by local melting of the material in the 
vicinity of inhomogeneities, 
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EFFECT OF TEMPERATURE ON SPALL OF POLYMERIC MATERIALS 

V. K. Golubev, S. A. Novikov, 
and Yu. S. Sobolev 

UDC 539.4:620.171.3 

The results of an investigation of spell of some polymeric materials are given in 
[1-9]. The largest number of experimental results have been obtained for Plexiglas [1-6]; 
spall of polycarbonate has been investigated in detail [7, 8]. Concerning the question of 
the effect of temperature on spell, it has been experimentally investigated only for some 
metals (see, for example, [10, ii]), and with respect to polymeric materials one can mention 
only [12], in which the rate of growth of microdefects of Plexiglas at room and increased 
temperatures was estimated using the light-scattering method. 

The results of an experimental investigation of spell of eight polymeric materials are 
given in this paper. Identical loading conditions and the use of methods of preliminary 
heating and cooling of the samples permit obtaining a realistic comparative picture of spall 
of the materials investigated and determining the nature of the effect of temperature on 
their spell resistance. 

The layout of the experimental setup for investigation of the effect of temperature on 
spa11 of materials has been given in [ii], and the testing scheme is shown in Fig. I, where 
the numbers denote the following: i) aluminum striker, 2) copper screen, 3) sample mount- 
ing, and 4) sample of the material being investigated. Samples 4 mm thick and 40 mm in 
diameter were loaded by the impact on a copper screen 12 mm thick of a plate made out of AMts 
aluminum alloy 4 mm thick, whose velocity w was specified with an accuracy of about 3%. 
Heating of the samples was accomplished through the copper screen by means of a Nichrome 
ribbon heater. The heating time did not exceed i0 min, and the temperature was recorded 
with the help of a Chromel--Copel thermocouple. Cooling to a temperature of --196~ was accom- 
plished by submerging the screen with the sample in a vessel containing liquid nitrogen. 
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